banner
 .::Networking::. Tăng cường bảo mật cho mạng IP (Phần 5) Go to original post Author: phuchn71 - Translator:  - Entry Date: 28/02/2009 02:37:21
Router Security Configuration Guide
4.3.5. Danh sách điều khiển truy cập nhanh
Vài mô hình router của Cisco hỗ trợ danh sách điều khiển truy cập đã được biên dịch, gọi là “Turbo ACLs”, phần 12.1(6) của IOS, và sau đó. Nếu sử dụng danh sách điều khiển truy cập đã được biên dịch thì có thể giảm đáng kể ảnh hưởng đến quá trình thực thi khi danh sách dài. Để thiết lập chức năng này ta sử dụng lệnh chế độ cấu hình access-list compiled (Nếu IOS của bạn không hỗ trợ chức năng này thì nó sẽ phát sinh một tín hiệu lỗi nhưng vô hại) . Khi chức năng này đã được thiết lập thì IOS sẽ biên dịch tất cả các danh sách truy cập phù hợp vào bảng tra nhanh và vẫn giữ lại được các ngữ nghĩa ăn khớp nhau của chúng. Sau khi đã thiết lập các danh sách truy cập nhanh, ta có thể xem thông tin về chúng bằng lệnh show access-list compiled. Nếu bạn dùng danh sách truy cập với hơn 5 qui tắc để tăng tốc các mạch ghép nối thì bạn có thể dùng chức năng này để củng cố quá trình thực thi của router.

4.3.6. Using Committed Access Rate

4.3.6. Sử dụng Tốc độ truy cập được ràng buộc (CAR = Committed Access Rate)
CAR là một dịch vụ của router cho phép các quản trị viên vài quyền điều khiển chỗ giao chung của lưu lượng vào và ra router. Bằng cách định cho các khối lưu lượng một lượng băng thông nhất định ta sẽ có thể điều chỉnh dữ liệu truyền qua router để bảo vệ lưu lượng yếu và hủy các lưu lượng quá mức băng thông cho phép đồng thời giới hạn được các lưu lượng giả tạo; tuy nhiên, công việc quan trọng nhất mà CAR làm được là giảm nhẹ các tác động gây tê liệt của các đợt tấn công DoS và các đợt tập trung chớp nhoáng. Bạn có thể dùng CAR để dành một phần băng thông của đường kết nối cho các lưu lượng quan trọng (1), hoặc để giới hạn lượng băng thông chiếm bởi một loại hình tấn công cụ thể (2). Trong trương hợp 2, có thể không phải lúc nào cũng cần giữ các qui tắc CAR nhưng phải đảm bảo lúc nào bạn cũng có thể sẵn sàng áp dụng nhanh chóng các qui tắc CAR khi phát hiện một đợt tấn công đang diễn ra. Phần này cung cấp tổng quan về CAR và một số ví dụ đơn giản.

CAR Command Syntax

Cấu trúc câu lệnh CAR
Để cấu hình CAR bạn phải áp dụng các qui tắc về hạn chế tốc độ cho các mạch ghép nối nào mà bạn thiết lập ràng buộc lên việc sử dụng băng thông hay lưu lượng. Mỗi mạch ghép nối có thể có một tập hợp các qui tắc riêng biệt, có thứ tự theo các hướng nhận (in-bound) và gửi (out-bound). Cấu trúc tổng quát của nguyên tắc CAR ở dưới đây, đã được rút gọn.

rate-limit {input | output} [access-group [rate-limit] acl]
token-bit-rate burst-normal-size burst-excess-size
conform-action action exceed-action action

Để thêm một qui tắc cho một mạch kết nối, bạn chỉ cần nhập qui qui tắc đó trong chế độ thiết lập mạch kết nối, xem ví dụ bên dưới. Để hủy một qui tắc, nhập lại nó và thêm vào đằng trước từ khóa no. Để xem các qui luật CAR trên tất cả các mạch kết nối, sử dụng lệnh show interface rate-limit. Kết quả của lệnh sẽ là các qui tắc và vài số liệu thống kê lưu lượng về giới hạn tốc độ. Ví dụ đầu tiên dưới đây là một mẫu kết quả của lệnh này.
Để biết thêm các câu lệnh của CAR, xem phần “IOS Quality of Service
Solutions Command Reference” trong tài liệu documentation của IOS.

Defining Rules

Định nghĩa các qui tắc
Mỗi một qui tắc hạn chế tốc độ được tạo bởi 3 phần: định nghĩa khối, các tham số nhóm mã thông báo token bucket, và các tiêu chuẩn thực thi.

Phần định nghĩa khối của qui tắc chỉ rõ loại lưu lượng (hoặc khối gói tin :packet aggregate) mà qui tắc áp dụng. Phần này phải bao gồm hướng của lưu lượng, và có thể bao gồm luôn fine-grained traffic selection được xác định với một danh sách điều khiển truy cập. Nếu qui tắc áp dụng cho các packet đi vào router thì sử dụng từ khóa input, trái lại dùng từ khóa output. Nếu phần này bao gồm mệnh đề access-group thì qui tắc CAR chỉ áp dụng cho lưu lượng phù hợp với danh sách truy cập. (Cũng có thể áp dụng các qui tắc CAR cho các gói tin bằng phần đầu của QoS QoS header và các tiêu thức criteria khác nhưng các thứ đó ngoài phạm vi của phần sơ lược này.) Nếu xuất hiện từ khóa rate-limit thì có nghĩa là khối đã được định rõ bằng một danh sách truy cập có giới hạn tốc độ, còn nếu không thì danh sách truy cập sẽ là một danh sách IP chuẩn hoặc mở rộng. Các danh sách truy cập giới hạn tốc độ xác định các khối dựa trên thứ tự trước sau của số IP hay các địa chỉ MAC.
Phần thứ hai của lệnh rate-limit bao gồm 3 tham số nhóm mã thông báo. Chức năng CAR sử dụng một mô hình nhóm mã thông báo để xác định hoặc hạn chế băng thông lưu lượng. Mô hình này cho bạn một cách thuận tiện để qui định các ranh giới của trạng thái lưu lượng cho một khối. Mẫu nhóm mã thông báo cần 3 tham số cho việc xác lập, đó là: tốc độ bit của mã thông báo, kích thước thông thường của truyền loạt lưu lượng (tính bằng byte), và kích thước truyền loạt lưu lượng khi quá giới hạn. Tham số tốc độ bit của mã thông báo phải được xác định bằng bps (bits per second = số bit trong một giây) và phải lớn hơn 8000. Nó mô tả tổng quát tốc độ cho phép cho khối. Kích thước thông thường của truyền loạt, tính bằng byte, nói chung là kích thước của một phiên giao dịch lưu lượng chuẩn theo một hướng riêng rẽ. Đối với các giao thức đơn giản, như là ICMP hoặc DNS, nó có thể đơn giản là kích thước của một thông điệp chuẩn. Kích thước khi quá giới hạn của truyền loạt cho biết kích thước lớn nhất có thể có của truyền loạt lưu lượng, trước khi khối sử dụng hết băng thông của nó. Để biết chi tiết hơn về mô hình nhóm mã thông báo, xem [9].

Phần cuối của qui tắc bao gồm 2 tiêu chuẩn thực thi. Tiêu chuẩn thứ nhất hướng dẫn router cách xử lý gói tin khi khối phù hợp với phần băng thông, tiêu chuẩn thứ hai hướng dẫn router cách xử lí khi khối vượt quá băng thông cho phép của nó. Tùy thuộc vào phiên bản IOS của bạn, có thể có nhiều đến 9 hành động, 4 hành động thường dùng nhất được mô tả dưới đây.
Cấu trúc làm việc của CAR Hành động được thực thi
drop Hủy bỏ gói tin.
transmit Truyền đi gói tin.
continue Áp dụng qui tắc hạn chế tốc độ tiếp theo.
set-prec-transmit prec Thiết lập thứ tự trước sau của IP thành prec và truyền đi gói tin.
Các ví dụ về CAR
Trong ví dụ đầu tiên, CAR được dùng để dành ra 10% của 10MB đường truyền theo chuẩn Ethernet cho lưu lượng SMTP gởi đi, và giới hạn lưu lượng tiếng ping ICMP gởi đi xuống dưới 1% của đường truyền. Phần còn lại của băng thông đường truyền sẽ hữu dụng cho lưu lượng SMTP còn lại và tất cả các lưu lượng IP khác. Thực tế, bạn có thể muốn bắt buộc giới hạn tốc độ cho cả ngoài lẫn trong ranh giới để bảo vệ lưu lượng SMTP quan trọng.

north(config)# no access-list 130
north(config)# access-list 130 permit tcp any any eq smtp
north(config)# no access-list 131
north(config)# access-list 131 permit icmp any any echo
north(config)# access-list 131 permit icmp any any echo-reply
north(config)# interface eth0/0
north(config-if)# rate-limit output access-group 130
1000000 25000 50000
conform-action transmit exceed-action continue
north(config-if)# rate-limit output access-group 131
16000 8000 8000
conform-action continue exceed-action drop
north(config-if)# rate-limit output 9000000 112000 225000
conform-action transmit exceed-action drop
north(config-if)# end
north# show interface rate-limit
Ethernet0/0
Output
matches: access-group 130
params: 1000000 bps, 25000 limit, 50000 extended limit
conformed 12 packets, 11699 bytes; action: transmit
exceeded 0 packets, 0 bytes; action: continue
last packet: 2668ms ago, current burst: 0 bytes
last cleared 00:02:32 ago, conformed 0 bps, exceeded 0 bps
matches: access-group 131
params: 16000 bps, 2500 limit, 2500 extended limit
conformed 130 packets, 12740 bytes; action: continue
exceeded 255 packets, 24990 bytes; action: drop
last packet: 7120ms ago, current burst: 2434 bytes
last cleared 00:02:04 ago, conformed 0 bps, exceeded 990 bps
matches: all traffic
params: 9000000 bps, 112000 limit, 225000 extended limit
conformed 346 packets, 27074 bytes; action: transmit
exceeded 0 packets, 0 bytes; action: drop
last packet: 7140ms ago, current burst: 0 bytes
last cleared 00:01:40 ago, conformed 2000 bps, exceeded 0 bps
north#
In this second example, CAR is being used to throttle a TCP SYN flood attack.

Trong ví dụ 2 này, CAR đang được dùng để tiết lưu một đợt tấn công làm lụt (flood attack) vào TCP SYN.

north(config)# no access-list 160
north(config)# access-list 160 deny tcp any any established
north(config)# access-list 160 permit tcp any any syn
north(config)# interface eth0/0
north(config-if)# rate-limit input access-group 160
64000 8000 8000
conform-action transmit exceed-action drop
north(config-if)# end
north#
Qui tắc CAR trong ví dụ trên đơn giản hủy bỏ các gói TCP SYN đã quá giới hạn. Trong trường hợp này, lưu lượng đã được xác thực cũng có thể bị ảnh hưởng. Nếu bạn khoanh vùng được nguồn của đợt tấn công (có thể là một dải IP) thì bạn có thể bảo vệ có chọn lọc hơn bằng cách sát nhập vùng địa chỉ vào danh sách truy cập đã xác định của khối. Để xem thêm một ví dụ nữa về sử dụng CAR chống lại đợt tấn công từ chối dịch vụ DoS, xem [10].
4.3.7. Tham khảo
[1] Chapman, D. Brent and Zwicky, Elizabeth D., Building Internet Firewalls,
O’Reilly Associates, 1995.
Cung cấp các thông tin hữu ích về cách lọc gói tin của các dịch vụ thường dùng, như là SMTP, FTP, Telnet, ...
[2] Karrenberg, D., Moskowitz, B. and Rekhter, Y. “Address Allocation for Private
Internets”, RFC 1918, February 1996.
Mô tả cấu tạo địa chỉ IP cho mạng nội bộ tư nhân. Internet Assigned Numbers Authority đã dành 3 khối vùng địa chỉ IP sau cho mạng nội bộ tư nhân: 10.0.0.0 – 10.255.255.255, 172.16.0.0 – 172.31.255.255, và 192.168.0.0 – 192.168.255.255.
[3] Held, G., and Hundley, K., Cisco Access List Field Guide, McGraw-Hill, 1999.
Thông tin chi tiết về danh sách điều khiển truy cập và nhiều ví dụ về cấu trúc và cách sử dụng danh sách.
[4] Held, G., and Hundley, K., Cisco Security Architectures, McGraw-Hill, 1999
Một giới thiệu hữu ích về bảo mật router và về danh sách truy cập.
[5] Cisco IOS Release 12.0 Security Configuration Guide, Cisco Press, 1999.
Tham khảo và chỉ dẫn các tính năng bảo mật trong IOS 12.0. Bao gồm thông tin về Ngăn chặn TCP, bản thân danh sách truy cập, và danh sách truy cập động.
[6] Ferguson, P. and Senie, D. “Network Ingress Filtering:
Cung cấp tổng quan về lọc địa chỉ nguồn.
[7] Cisco ISP Essentials, version 2.9, Cisco Systems, June 2001.
Tập tin IOSEssentialsPDF.zip có ở http://www.cisco.com/public/cons/isp/documents .
Chỉ dẫn chi tiết về thiết lập danh sách truy cập trong nhiều tình huống khác nhau, và một thảo luận hữu ích về các vấn đề cần xem xét đối với quá trình thực thi.
[8] Sedayao, J., Cisco IOS Access Lists, O’Reilly Associates, 2001.
Chỉ dẫn chi tiết về danh sách truy cập, bao gồm báo cáo về sử dụng danh sách truy cập bằng các giao thức định tuyến.
[9] “Selecting Burst and Extended Burst Values for Class-based Policing”, Cisco
Tech Note, Cisco Systems, Feb 2002.
Có tại http://www.cisco.com/warp/public/105/carburstvalues.html
Mô tả mô hình nhóm mã thông báo CAR và tham số kích thước của truyền loạt khá chi tiết; chỉ dẫn cách chọn các giá trị hữu dụng.
[10] “Using CAR During DOS Attacks”, Cisco Tech Note, Cisco Systems, 2001.
Có tại http://www.cisco.com/warp/public/63/car_rate_limit_icmp.html
Xem qua một ví dụ chi tiết về CAR liên quan đến quá trình làm lụt (flooding) ICMP.
4.4. Định tuyến và giao thức định tuyến
“Một phương thức là một mô tả hình thức của một tập hợp các qui tắc và qui ước chi phối cách trao đổi thông tin của các thiết bị trên một mạng máy tính”[5]. Phần này ta sẽ bàn luận 2 loại giao thức cơ bản, sẽ tập trung vào loại 2. Hai loại giao thức đó là:
Giao thức tuyến định
Đó là các giao thức có thể được định tuyến bằng một router. Giao thức tuyến định cho phép router diễn dịch chính xác mạng logic. Vài ví dụ về giao thức này là IP, IPX, Apple Talk, và DECnet.
Giao thức định tuyến
“Một giao thức định tuyến thu thập thông tin về các mạng hiện hữu và khoảng cách hoặc giá cả để liên lạc đến các mạng đó.”[7] Các giao thức này hỗ trợ giao thức tuyến định và được dùng để duy trì bảng định tuyến. Vài ví dụ về giao thức này là OSPF, RIP, BGP, và EIGRP.
Tất cả các ví dụ trong phần này đều dựa trên kiến trúc mạng trên hình 4-1

Giao thức tuyến định
Thông dụng nhất là cặp TCP/IP; cơ sở của nó là Giao thức mạng Internet Protocol IP. Phần này không đi sâu vào giao thức này, vì nó vượt quá phạm vi tài liệu hướng dẫn này, xem [6] để biết thêm hướng dẫn. ARPA đã tài trợ cho việc phát triển IP trong hơn 25 năm qua trong dự án ARPANET. Ngày nay, nó là nền tảng của Internet toàn cầu. Sự lớn mạnh và phổ biến của nó có thể qui cho khả năng kết nối các mạng máy tính khác nhau bất kể môi trường vật lý nào, và do bản chất linh hoạt và mở của kiến trúc mạng IP.
IP được thiết kế để sử dụng trên các mạng lớn; bằng cách sử dụng IP, một máy chủ kết được nối bất cứ đâu trên mạng có thể giao tiếp với bất cứ mày nào khác. Trong thực tế, các ứng dụng máy chủ hầu như không bao giờ sử dụng IP thô để giao tiếp. Thay vào đó, chúng dùng một trong 2 phương thức truyền tải qua lớp được xây dựng dựa trên IP: đó là TCP (Transmission Control Protcol = Giao thức điều khiển số liệu) hoặc UDP (User Datagram Protocol = Giao thức gam dữ liệu người dùng). Việc dùng TCP hay UDP đều không liên quan gì đến việc định tuyến (có vai trò dành riêng ở lớp mạng). Từng máy chủ IP không cần biết đường trong mạng để đến với máy chủ khác mà chỉ cần biết địa chỉ của một hoặc một số nhỏ các router. Các router đó có nhiệm vụ chỉ đường cho từng gói tin IP đến chỗ nó cần đến.
Trong một mạng nhỏ, từng router có thể chỉ đơn giản nối trực tiếp tới các router khác. Dĩ nhiên trong các mạng lớn, làm như thế rất tốn kém. Thay vì làm như vậy, từng router duy trì một bảng tuyến trong đó có thông tin về cách chuyển các gói tin đến địa chỉ của chúng. Đối với bất kì mạng IP lớn nào, thao tác này có chính xác, có hiệu quả, có bảo mật hay không đều tùy thuộc vào sự toàn vẹn của bảng tuyến của mạng đó. Để có thêm thông tin chi tiết về các khái niệm định tuyến, xem [6].
Bảng tuyến và Giao thức định tuyến
Nhiệm vụ cơ bản của một router là gửi gói tin đến địa chỉ đã định. Để thực hiện điều này, từng router cần một bảng tuyến. Từng router xây dựng bảng tuyến cho nó dựa trên thông tin từ mạng và từ các quản trị viên. Sau đó router dùng một tập hợp phép đo lường, tùy vào nội dung của bảng tuyến và thuật toán định tuyến của nó, để so sánh các tuyến rồi quyết định đường tới đích tốt nhất. Router dùng 4 kĩ thuật cơ bản sau để xây dựng bảng tuyến:
1. Kết nối trực tiếp: Bất cứ phần nào của mạng LAN mà router kết nối trực tiếp đều tự động được thêm vào bảng tuyến. Ví dụ, router Central nối với phần mạng LAN 14.2.9.0/24.
2. Định hướng tĩnh: Với vai trò là người quản trị mạng, bạn có thể xác lập cho router sử dụng một tuyến cho trước đến một đích xác định. Phương pháp này thường trước sau gì cũng dùng khi đã dùng các phương pháp khác
3. Định tuyến động: Dùng router cập nhật thông điệp từ các router khác để tạo tuyến. Thuật toán định tuyến đi với từng giao thức định tuyến xác định sẽ quyết định đường dẫn tối ưu tới đích và cập nhật bảng tuyến. Phương pháp này linh động nhất bởi nó có thể tự động cập nhật những thay đổi trong mạng.
4. Định tuyến mặc định: Dùng tuyến được nhập vào thủ công tới ‘cổng vào của lần dùng cuối’ cụ thể khi các cơ cấu định tuyến khác không nhận biết được tuyến. Phương pháp này hữu dụng nhất cho các router ở biên và các router có vai trò như kết nối nền giữa một mạng LAN nhỏ và mạng lớn như Internet. Các router dựa vào một cổng vào mặc định duy nhất thường không dùng các giao thức định tuyến
Mặc dù có nhiều giao thức định tuyến động nhưng có thể chia chúng ra 2 nhóm: nhóm giao thức cổng trong và nhóm giao thức cổng ngoài. Một IGP (Interior Gateway Protocol = giao thức cổng trong) được dùng để trao đổi thông tin tuyến giữa các cổng nằm trong một hệ thống độc lập. Một hệ thống độc lập là một nhóm các thành phần mạng dưới một tên miền được quản lý. Các cổng nằm trong hệ thống độc lập sử dụng thông tin tuyến được truyền bởi các thông điệp IGP để phân luồng lưu lượng. Một EGP (Exterior Gateway Protocol = Giao thức cổng ngoài) được dùng để trao đổi thông tin tuyến giữa các hệ thống độc lập. Theo tiêu chuẩn, mặc dù không phổ biến, thì các IGP được giao việc trên các router trong, và các EGP thì trên các router xương sống. Các router biên có thể dùng một trong hai hay cả hai tùy thuộc vào cấu trúc mạng tìm thấy chúng. BGP-4 (Border Gateway Protocol version 4 = Giao thức cổng biên phiên bản 4) là EGP dùng để truyền thông tin giữa các mạng độc lập trên Internet. Phần này tập trung vào một số nhỏ các giao thức định tuyến thông dụng như: RIP, OSPF, BGP và EIGRP. 3 giao thức đầu theo chuẩn IETF, giao thức còn lại EIGRP còn lại do nhà đầu tư xác định. RIP, viết tắt của Routing Information Protocol (giao thức thông tin định tuyến), là một ví dụ về IGP định hướng từ xa. OSPF, Open Shortest Path First = Mở đường ngắn nhất trước, là một ví dụ về IGP của trạng thái đường nối. BGP-4 là EGP theo chuẩn IETF. EIGRP, giao thức định tuyến cổng trong mở rộng, là một IGP của riêng Cisco, thường được dùng trong tất cả các mạng Cisco. Dưới đây là bảng so sánh ngắn.
Bảng 4-2 – 4 giao thức định tuyến IP phổ biến

RIP Giao thức định hướng từ xa: duy trì một danh sách các khoảng cách tới các mạng khác đo bằng bước nhảy, số router một gói tin phải đi ngang qua để đến đích. Bị giới hạn về kích cỡ vì khoảng cách nào quá 15 bước nhảy thì không thể tới được. Trạm truyền thông 30 giây cập nhật 1 lần tất cả các router RIP gần nó. Mỗi bản cập nhật là một bảng tuyến. RIP thích hơp cho các mạng nhỏ
OSPF Giao thức trạng thái đường truyền: sử dụng đơn vị đo dựa trên tốc độ đường truyền để quyết định đường tới các mạng khác. Mỗi router duy trì một bản đồ giản lược của toàn bộ mạng. Các bản cập nhật được gửi bằng kĩ thuật multicast và được gửi chỉ khi nào cấu hình của mạng thay đổi. Mỗi bản cập nhật chỉ bao gồm những thay đổi đến mạng. OSPF thích hợp cho các mạng lớn

EIGRP Giao thức định hướng từ xa: duy trì một tập hợp các đơn vị đo lường phức tạp đo khoảng cách đến các mạng khác và kết hợp chặt chẽ với vài tính năng của các giao thức trạng thái đường truyền. Trạm truyền thông cứ 90 giây cập nhật một lần cho tất cả các EIGRP gần nó. Mỗi bản cập nhật chỉ bao gồm các thay đổi đến mạng. EIGRP thích hợp các cho mạng lớn.
BGP Một giao thức cổng ngoài định hướng từ xa nhờ một nhóm các qui tắc duy trì các con đường tới các mạng. Các bản cập nhật được gửi trên khắp các kết nối TCP giữa các đẳng đã được xác định cụ thể. BGP-4 nhờ khối tuyến hỗ trợ các mạng cực lớn như Internet.
Một khía cạnh quan trọng nữa của lược đồ giao thức định tuyến là lượng thời gian cần thiết để kiến trúc mạng hay những thay đổi về kết nối đựơc thể hiện trong bảng tất cả các router bị ảnh hưởng. Khía cạnh này thường được gọi là tốc đô hội tụ. Ví dụ, trong một mạng lớn OSPF nhanh hơn nhiều so với RIP.
Việc cấu hình định tuyến trong các mạng IP có thể là công việc phức tạp, và cũng nằm ngoài phạm vi của hướng dẫn này. Định tuyến chắc chắn tạo ra nhiều vấn đề về bảo mật, và IOS của Cisco cung cấp nhiều dịch vụ bản mật trong quá trình định tuyến; Phần này bàn luận vài vấn đề bảo mật và mô tả tương đối chi tiết nhiều dịch vụ bảo mật. Để biết các hướng dẫn chung về các giao thức định tuyến, xem tài liệu của Cisco hoặc [3].
4.4.1. Các rủi ro thường gặp khi định tuyến
Một câu hỏi thường không được chú ý là “Tại sao ta lại phải cần chuốc lấy lo lắng về bảo mật mạng?”. Một câu hỏi hay hơn là “Kẻ phá hoại có thể gây những tổn thất nào đến mạng của ta?” Phần 3 giới thiệu vài động cơ thúc đẩy bảo mật router toàn diện. Phần này tập trung vào các vấn đề bảo mật liên quan đến định tuyến và giao thức định tuyến. Bảo mật quá trình định tuyến cần là một ưu tiên hàng đầu đối với các quản trị viên muốn:
Ngăn cản sự truy cập trái phép đến tài nguyên mạng,
Bảo vệ thông tin nhiệm vụ tránh bị phơi bày và sửa chữa không được phép,
Ngăn cản sự gián đoạn và từ chối thực thi trong dịch vụ

Router hoặc tên miền định tuyến không được bảo vệ sẽ trở thành một mục tiêu cho các kẻ tấn công có hiểu biết về mạng. Ví dụ, kẻ tấn công gửi các gói tin cập nhật định tuyến không đúng đến một router không được bản vệ có thể dễ dàng gây bất ổn cho bảng tuyến của router. Bằng cách này, kẻ tấn công có thể định lại tuyến của các lưu lượng trên mạng theo ý muốn. Chìa khóa để ngăn ngừa những kiểu tấn công như vậy là bảo vệ bảng tuyến tránh các thay đổi không phép và nguy hiểm. Có 2 lối tiếp cận cơ bản nhằm bảo vệ sự ổn định của bảng tuyến:

1. Sử dụng các tuyến tĩnh –
Có thể phù hợp với mạng nhỏ, nhưng không ổn định trong mạng lớn.
2. Chứng thực các bản cập nhật bảng tuyến –
Bằng cách dùng giao thức đinh tuyến có chứng thực, các quản trị mạng có thể phát hiện ra các đợt tấn công dựa trên các thay đổi định tuyến không phép. Các bản cập nhật được chứng thực chắc rằng các thông điệp cập nhật đến từ các nguồn xác thực, các thông điệp không thật sẽ tự động được hủy bỏ.
Một dạng tấn công khác một kẻ phá hoại có thể cố đối với router là dạng tấn công từ chối dịch vụ. Dạng này có thể thực hiện bằng rất nhiều cách. Ví dụ, việc ngăn cản các thông điệp cập nhật router gửi đi hay nhận và sẽ dẫn đến sự hạ xuống của vài phần của mạng. Để kháng cự các đợt tấn công từ chối dịch vụ và hồi phục nhanh chóng, các router cần các tuyến sao lưu và hội tụ mau lẹ.
4.4.2. ARP và các mạng LAN
Tuy nhiên vì ARP cũng như ARP proxy đều không có bản mật. Điểm yếu bảo mật chủ yếu của ARP là ở chỗ nó không phải được thiết kế để dùng bất kì xác lập chứng thực nào. Bất cứ ai trên phần mạng LAN đều có thể sửa đổi mục vào của cạc (cache) ARP của router phục vụ phần mạng đó. Vì thế, nếu một máy chủ trên mạng không dùng các cổng vào mặc định nhưng thay vào đó là dùng các ARP proxy để xử lý quá trình định tuyến thì điều này cũng dễ xảy ra với các tuyến xấu và nguy hiểm. Trong bất cứ trường hợp nào, không nên dùng ARP proxy nữa và nên vô hiệu hóa nó. Ví dụ sau mô tả cách làm.

Central# config t
Enter configuration commands, o¬ne per line. End with CNTL/Z.
Central(config)# interface ethernet0/0
Central(config-if)# no ip proxy-arp
Central(config-if)# exit
Central(config)# interface ethernet0/1
Central(config-if)# no ip proxy-arp
Central(config-if)# end
Central#
4.4.3. Các bảng tuyến, các tuyến tĩnh và các giao thức định tuyến
Phần này mô tả cách bảo vệ router tránh các rủi ro thường thấy khi định tuyến. Phần này tập trung vào việc sử dụng chứng thực router ngang hàng với các giao thức cổng trong. Vài chỉ dẫn về bảo mật cho các giao thức một cổng ngoài, BGP-4, được dành riêng vào phần 4.4.5.
Chứng thực router lân cận
Mục đích cơ bản của chứng thực router lân cận là bảo vệ sự bền vững của một tên miền định tuyến. Trong trường hợp này, chứng thực xảy ra khi 2 router lân cận trao đổi thông tin định tuyến. Chứng thực sẽ bảo đảm router nhận sát nhập vào bảng tuyến của nó các thông tin tuyến mà router gửi đã được chứng thực thực thực sự định gửi. Việc này ngăn cản một router đã được chứng thực chấp nhận và thực thi các bản cập nhật không phép, nguy hiểm, hoặc gián đoạn có thể nguy hại tới bảo mật hay hiệu lực của mạng. Một nguy hại như thế có thể dẫn đến nguy cơ định tuyến lại các lưu lượng, một sự từ chối dịch vụ, hay đơn giản cho phép một người không được phép quyền truy cập các gói tin nhất dịnh.
Chứng thực OSPF
Chứng thực router lân cận là một cơ chế mà khi được áp dụng đúng đắn có thể ngăn ngừa nhiều đợt tấn công định tuyến. Mội một router thực hiện chứng thực bằng khóa chứng thực mà chúng có. Có nghĩa là tất cả các router nối tới cùng phần mạng cùng dùng một khóa mật chung. Từng router gửi sau đó dùng khóa này để đánh dấu thông điệp cập nhật bảng tuyến. Router nhận kiểm tra khóa chung để quyết định thông điệp có nên nhận hay không. Phần này mô tả cách thiết lập chứng thực router lân cận trong OSPF, vì nó là một minh họa sinh động cho nguyên tắc cơ bản này; chứng thực trong RIP phiên bản 2 và EIGRP tương tự.
OSPF dùng 2 loại chứng thực lân cận: văn bản thô và thông điệp mã hóa MD5. Chứng thực văn bản thô dùng khóa chung của mọi router trên phần mạng. Khi một router gửi xây dựng một gói tin OSPF, nó đánh dấu gói tin bằng cách thay khóa bằng văn bản thô vào trong phần đầu của OSPF. Router nhận sau đó sẽ so sánh khóa nhận được với khóa trong bộ nhớ. Nếu 2 khóa trùng nhau thì router nhận chấp nhận gói tin. Bằng không thì router nhận bãi bỏ gói tin. Phương thức này không bảo mật cao vì khóa được lưu trong gói tin dưới dạng văn bản thô. Dùng cách này sẽ làm lộ khóa mật cho kẻ tấn công dùng thiết bị dò mạng vào đúng phần mạng LAN nạn nhân. Một khi kẻ tấn công lấy được khóa mật rồi, chúng có thể làm rối một router đã chứng thực. Phương thức thứ hai, bảo mật hơn, là chứng thực thông điệp đã được mã hóa. Hình 4-3 cho thấy một ví dụ về mạng với các giao thức định tuyến của nó.

Trong ví dụ này, các router North, East và Central cùng chung khóa mật, r0utes-4-all, ID của khóa là 1. Mỗi khóa chứng thực nhau sử dụng phương thức chứng thực mã hóa MD5, giá trị chứng thực mã hóa giả sử là 2. Hình 4-4 cho thấy East chứng thực qua North. Đầu tiên East xây dựng một gói tin OSPF, cả phần đầu lẫn phần thân. Sau đó nó lấy một khóa chính để dùng trên phần mạng. Trong trường hợp này, khóa đó là r0utes-4-all. ID tương ứng của khóa, 1, được đặt ở phần đầu gói tin. East đồng thời cũng đặt một dãy số 32 bit vào phần đầu gói tin. Dãy số này bảo vệ tránh những đợt tấn công lặp lại sao cho không có 2 gói tin OSPF nào có cùng giá trị băm. Dãy số này tăng 1 đơn vị mỗi khi có gói tin mới. Cuối cùng, khóa mật được nối thêm vào gói tin. East thực thi thuật toán băm mã hóa, MD5, cho gói tin OSPF. Kết quả, 16 byte, được viết chồng lên khóa mật đã được nối thêm vào gói tin.
Router nhận, North, dựa vào ID của khóa để quyết định khóa nào đã được dùng để sinh mã băm hay kí hiệu xác nhận. Sau đó router nhận dùng khóa của nó để sinh lại mã băm cho gói tin đã nhận theo cùng cách mà router gửi đã làm. Nếu mã băm vừa sinh ra phù hợp với mã băm được gửi từ router East thì router North sẽ chấp nhận gói tin. Bằng không thì nó sẽ coi như gói tin không hợp lệ và hủy.

Chứng thực văn bản OSPF
Phương thức này kiến nghị không nên dùng, dùng phương thức MD5 tốt hơn, xem bên dưới.
Chứng thực mã hóa MD5 OSPF
Ví dụ dưới đây minh họa một ví dụ về thiết lập MD5 cho chứng thực lân cận router OSPF. Các bản ghi của ví dụ dưới đây cho thấy các router North và East nhận khóa r0utes-4-all. Thực tế thì tất cả các router tham gia vào mạng đã cho nên được cấu hình tương tự dùng cùng khóa. Dùng ví dụ mạng ở hình 4-1, router Central cũng sẽ phải được cấu hình chứng thực MD5 và dùng cùng khóa như bên dưới đây.

North# config t
Enter configuration commands, o¬ne per line. End with CNTL/Z.
North(config)# router ospf 1
North(config-router)# network 14.1.0.0 0.0.255.255 area 0
North(config-router)# area 0 authentication message-digest
North(config-router)# exit
North(config)# int eth0/1
North(config-if)# ip ospf message-digest-key 1 md5 r0utes-4-all
North(config-if)# end
North#
East# config t
Enter configuration commands, o¬ne per line. End with CNTL/Z.
East(config)# router ospf 1
East(config-router)# area 0 authentication message-digest
East(config-router)# network 14.1.0.0 0.0.255.255 area 0
East(config-router)# network 14.2.6.0 0.0.0.255 area 0
East(config-router)# exit
East(config)# int eth0
East(config-if)# ip ospf message-digest-key 1 md5 r0utes-4-all
East(config-if)# end
East#
Chứng thực RIP
Giao thức định tuyến RIP cũng hỗ trợ chứng thực đề ngăn ngừa các đợt tấn công. Phương thức chứng thực của RIP rất giống với của OSPF mặc dù các lệnh IOS có hơi khác nhau. Các router RIP lân cận dùng chung các khóa mật. Mỗi router gửi sử dụng các khóa này để sinh mã băm sát nhập vào từng thông điệp cập nhật RIP. Router gửi sau đó dùng khóa mật chung để kiểm tra giá trị băm và quyết định thông điệp có được chấp nhận hay không.

Chứng thực văn bản thô RIP
Phương thức này kiến nghị không nên dùng, dùng phương thức MD5 tốt hơn dưới đây.

Chứng thực MD5 cho RIP
Ví dụ dưới đây minh họa một ví dụ về cách thiết lập MD5 cho chứng thực lân cận router RIP. Các bản ghi của ví dụ bên dưới cho thấy các router trong hình 4-3, Central và South, nhận khóa my-supersecret-key, lần lượt chứa trong chuỗi khóa của chúng. Thực tế, tất cả các router nối với một mạng đã cho phải được cấu hình tương tự. Có nghĩa là tất cả các router phải có một hoặc nhiều khóa chung. Trước khi kích hoạt chứng thực MD5 cho RIP, từng router lân cận phải có một khóa chung. RIP quản lý các khóa chứng thực bằng việc dùng chuỗi khóa. Một chuỗi khóa là một nơi chứa nhiều khóa với ID của khóa đi kèm và thời gian tồn tại của chúng. Nhiều khóa với thời gian sống khác nhau có thể tồn tại. Tuy thế chỉ có một gói tin chứng thực được gửi đi. Router kiểm tra các số khóa theo thứ tự từ thấp đến cao và sử dụng khóa hợp lệ đầu tiên nó bắt gặp được.
HVA-Translator group
[digg] [delicious] [google] [yahoo] [technorati] [reddit] [stumbleupon]
Other posts in the same group:

Tăng cường bảo mật cho mạng IP (Phần 5)
Go to top Go to original post  

Powered by JForum - Extended by HVAOnline
 hvaonline.net  |  hvaforum.net  |  hvazone.net  |  hvanews.net  |  vnhacker.org
1999 - 2013 © v2012|0504|218|